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Example 10.1 The two thigh bones
(femurs), each of cross-sectional arealO cm?
support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer Total cross-sectional area of the
femurs is A =2 x 10 cm? = 20 x 10* m?2 The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s™?). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

F

Pav=X=2><105an2 <

10.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

—

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at rest.
This element is in the form of a right-
angled prism. The element is small so that
the effect of gravity can be ignored, but it
has been enlarged for the sake of clarity.

Fig. 10.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P, B, and P, on
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this element of area corresponding to the normal
forces F,, F, and F, as shown in Fig. 10.2 on the
faces BEFC, ADFC and ADEB denoted by A , A
and A_ respectively. Then

F, sin6 =F, F cos®=F, (by equilibrium)
A sin6 = A, A cosd=A (bygeometry)
Thus,
F, F. F,
b __c_ _[1; P =PC=PG.
A, A A, b (10.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it. The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

10.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 10.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P, and P,
respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P,A) acting
downward, at the bottom (P,A) acting upward.
If mg is weight of the fluid in the cylinder we
have

(P,-P) A=mg (10.5)

Now, if p is the mass density of the fluid, we
have the mass of fluid to be m = pV= phA so
that

P,-P= pgh (10.6)
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Fig.10.3 Fluid under gravity. The effect of gravity is
illustrated through pressure on a vertical
cylindrical column.

Pressure difference depends on the vertical
distance h between the points (1 and 2), mass
density of the fluid p and acceleration due to
gravity g. If the point 1 under discussion is
shifted to the top of the fluid (say, water), which
is open to the atmosphere, P, may be replaced
by atmospheric pressure (P,) and we replace P,
by P. Then Eq. (10.6) gives

P=P +pgh (10.7)

Thus, the pressure P, at depth below the
surface of a liquid open to the atmosphere is
greater than atmospheric pressure by an
amount pgh. The excess of pressure, P- P, at
depth his called a gauge pressure at that point.

The area of the cylinder is not appearing in
the expression of absolute pressure in Eq. (10.7).
Thus, the height of the fluid column is important
and not cross-sectional or base area or the shape
of the container. The liquid pressure is the same
at all points at the same horizontal level (same
depth). The result is appreciated through the
example of hydrostatic paradox. Consider three
vessels A, B and C [Fig.10.4] of different shapes.
They are connected at the bottom by a horizontal
pipe. On filling with water, the level in the three
vessels is the same, though they hold different
amounts of water. This is so because water at
the bottom has the same pressure below each
section of the vessel.

3 A B
Fig 10.4 Illustration of hydrostatic paradox. The
three vessels A, B and C contain different

amounts of liquids, all upto the same
height.

Example 10.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h=10m and p = 1000 kg m*. Take g = 10 m s2
From Eq. (10.7)
P=P +pgh
=1.01 x 10° Pa+ 1000 kg m®x 10 m s2x 10 m
=2.01 x 10° Pa
= 2 atm
This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures. |

10.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 x 10%° Pa (1 atm). Italian scientist
Evangelista Torricelli (1608-1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.10.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, P,

P =pgh (10.8)
where p is the density of mercury and h is the
height of the mercury column in the tube.
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In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of p in Eq. (10.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.

The mm of Hg and torr are used in medicine
and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 10° Pa

An open tube manometer is a useful
instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 10.5 (b)]. The pressure P at
A is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P- P, given by Eq. (10.8) and is proportional
to manometer height h.

S4—P=0
A
h
B
Py ‘
\ R o
B

Fig 10.5 (a) The mercury barometer.
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B

(b) The open tube manometer
Fig 10.5 Two pressure measuring devices.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 10.3 The density of the
atmosphere at sea level is 1.29 kg/m?.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (10.7)
pgh = 1.29kgm>x9.8ms?>xh m=1.01x10°Pa
.. h=7989 m =8 km
In reality the density of air decreases with
height. So does the value of g. The atmospheric
cover extends with decreasing pressure over
100 km. We should also note that the sea level
atmospheric pressure is not always 760 mm of
Hg. A drop in the Hg level by 10 mm or more is a
sign of an approaching storm. <

‘ Example 10.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm x 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 x 10° kg m?3,
g=10 ms?2)




